

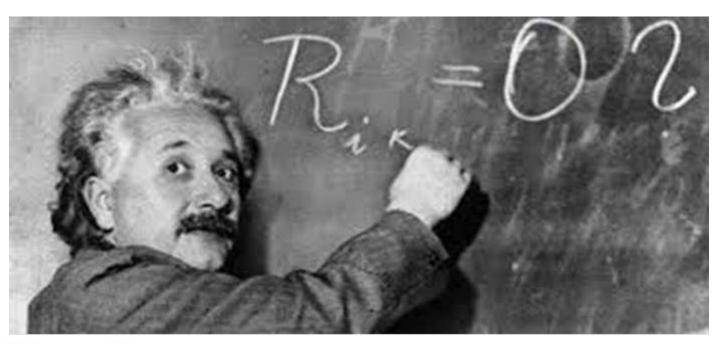
TAVI, how minimalist can we become?

Thierry Lefèvre and the ICPS team

Compassionate use for the 1st case

Cardiogenic shock, surgery denied

Indications for intervention in aortic stenosis and recommendations for the choice of intervention mode (continued)



Recommendations		Level
In patients who are at increased surgical risk (STS or EuroSCORE II ≥4% or logistic EuroSCORE I ≥10% or other risk factors not included in these scores such as frailty, porcelain aorta, sequelae of chest radiation), the decision between SAVR and TAVI should be made by the Heart Team according to the individual patient characteristics (see according table), with TAVI being favoured in elderly patients suitable for transfemoral access.	1	В


Everything should be made as simple as possible ...

But not simpler

General anesthesia

- ✓ Hemodynamic instability
- ✓ Late stroke indentification
- ✓ Pulmonary infection
- ✓ Difficult extubation
- ✓ Prolonged ICU and hospital stay

Conscious sedation (April 2009)

Concious sedation vs General anesthesia

30 day death

	ratio	limit	limit	Anesthesia	Anesthesia
Behan	0.13	0.01	2.63	0/9	1/3
Dehedin	1.34	0.35	5.05	3/34	6/91
Bergmann	0.61	0.20	1.91	6 / 100	5 / 51
Ben-Dor	0.24	0.06	0.97	3 / 70	4/22
Motloch	1.34	0.35	5.21	5 / 41	3/33
Yamamoto	1.13	0.33	3.91	10 / 130	3/44
Baballaros	0.11	0.01	2.08	0/70	4/72
Balanika	0.93	0.16	5.30	2/41	3 / 57
Attizzani	0.98	0.27	3.55	5 / 116	4/91
Gauthler	0.45	0.13	1.57	3 / 66	11/110
Petronio	0.83	0.47	1.44	38 / 961	17 / 355
Kesimci	0.77	0.31	1.91	7/72	10/79
Brecker	1.08	0.50	2.33	13 / 245	12 / 245
D'Errigo	0.80	0.38	1.68	12 / 310	15/310
Kiramijyan	0.46	0.21	1.04	23 / 467	7/66
Jabbar	0.16	0.01	2.73	0 / 71	6 / 145
Miles	0.50	0.05	5.32	1/44	2/44
Palermo	0.16	0.01	3.84	0/44	1/21
Debry	1.04	0.34	3.23	4/52	9/122
	0.73	0.57	0.93	135 / 2943	123 / 1961

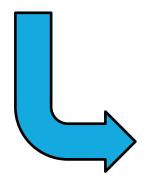
Heterogeneity: $Tau^2=0.00$; $Chi^2=13.1$, df=18, P=.78; $I^2=0\%$ Test for overall effect: Z=-2.50 (P=.01)

В

weight 1.61 2.46 4.98 4.58 2.50 3.37 3.34 1.89 3.37 6.21 18.68 7.17 9.03 11.28 9.23 3.23 1.50 1.52 4.05

Too much monitoring

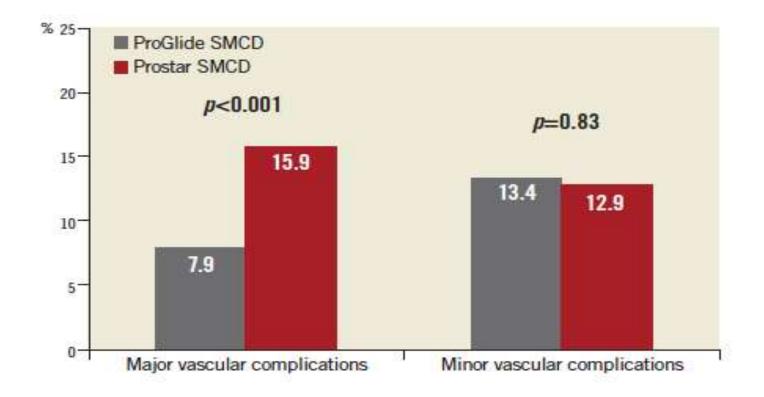
- ✓ Urinary catheter
- ✓ Jugular or subclavian vein
- ✓ Radial artery monitoring



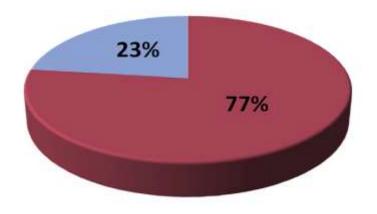
TTE (April 2009)

2 venous lines (April 2009, 1 basilic)

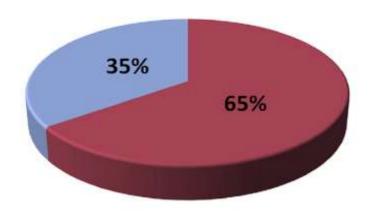
Main access site complications


- ✓ Dissection/occlusion
- ✓ Perforation, rupture
- √ Hematoma
- ✓ Transfusion

Better pre-procedural screening Prostar (2009)


Preclosing with Two Proglide (2015)
Downsizing from 24Fr to 14Fr
Peripheral interventions toolbox

Proglide vs Prostar



Access site complications

All vascular complications

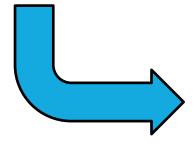
Major vascular complications

- Related to the primary access
- Related to the secondary access

Secondary access site complications

- ✓ Dissection✓ Perforation cclusion

- ✓ Transfusion



Radial for 2nd access

Predilatation

- ✓ Acute a ortic regurgitation (1-2%)
- ✓ Higher risk of AV Block?
- ✓ Higher risk of stroke?
- ✓ Worse valve deployment stability

No predilatation (2014)

Temporary Pacemaker

- ✓ Pericardial effusion/ tamponade✓ Infection
- ✓ Hem
- nsfusion

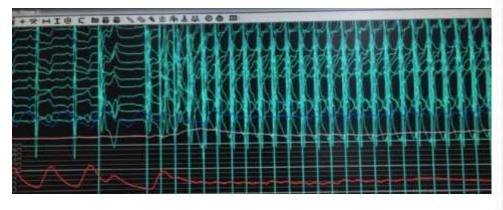
LV wire stimulation (2005)

Rapid pacing using the LV wire

	BAV N=38	TAVI N=87
	,	
Atrial fibrillation	12 (31.6%)	15 (17.2%)
Left bundle branch block	7 (18.4%)	4 (1.6%)
Right bundle branch block	1 (2.6%)	-01/2
Left ventricular ejection fraction (%)	45.9 ± 15.4	6.4 ± 13.2
Mean gradient – Pre	46,5 17	49.1 ± 14.4
Surface - Pre (cm²)	0.010.2	1300 O
Femoral approach Central venous approach Rate of pacing (mean) (bpm)	38 (100%)	8 10Cg
Central venous approach	6110	8 (9.2%)
Rate of pacing (mean) (bpm)	8.5 ± 9.8	169.7 ± 14.8
Mean pressure during pacing (A HA)	$+4.6 \pm 14.3$	42.3 ± 7.0
Mean gradient Post	18.0 ± 9.7	7.5 ± 4.5
Mean gradient Post Procedural complete is 300000000000000000000000000000000000		
Death 1	1 (2.6%)	4 (4.6%)
Stroke	2 (5.3%)	1 (1.1%)
Omplication	1 (2.6%)	10 (11.5%)
Temporary 19 bit ck	1 (2.6%)	6 (6.9%)
Tamponi de	0 (0%)	1 (1.1%)
Valve malposition	0 (0%)	5 (5.7%)
Stimulation failure	0 (0%)	0 (0%)
Permanent pacemaker (new PM)	2 (2.6%)	14 (16.1%)
Procedure duration (min)	49.7 ± 31	68.7 ± 30.9
X-ray exposure (G/cm²)	31.5 ± 24.8	46.7 ± 38.9

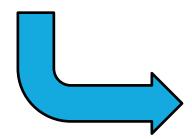
Rapid pacing using the LV wire

Temporary Pace-Maker



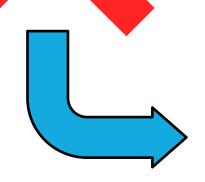
Rapid pacing using the LV wire

Temporary Pace-Maker



Screening 1-2 weeks before
Patient preparation
Contrast media/saline (80/20%)
Renal guard (clairance < 40)
Optimal view defined by MSCT

Rare Complications


- ✓ Annulus rupture
- ✓ LV Perforation
- ✓ Coronary occlusions
- $\checkmark \text{ PVL} > 1$

MSCT, MSCT, MSCT
New valve generation
Dedicated wire
Coronary protection

DAPT Pre and Post

- ✓ Access site complications
- ✓ Bleeding
- ✓ Hemoragic stroke

DAPT post only 1 month

DAPT 3-6 months in case of stent

No DAPT in patient on anticoagulant

(anticoagulant and plavix 3-6 months post stenting)

Why should we make it simple?

- ✓ Shorter procedural time
- ✓ Less complications
- ✓ Better patient confort
- ✓ Decrease ICU and hospital stay
- ✓ Decrease staff workload
- ✓ Improved mid-term outcome
- ✓ Lower cost

Thank you for your attention!

